Biohybrid bacteria–based microrobots are increasingly recognized as promising externally controllable vehicles for targeted cancer therapy. Magnetic fields in particular have been used as a safe means to transfer energy and direct their motion. Thus far, the magnetic control strategies used in this context rely on poorly scalable magnetic field gradients, require active position feedback, or are ill-suited to diffuse distributions within the body. Here, we present a magnetic torque–driven control scheme for enhanced transport through biological barriers that complements the innate taxis toward tumor cores exhibited by a range of bacteria, shown for